tree writer pkg README

Marc Paterno
CD/CEPA/APS/SLD
v00-03-00

December 19, 2003

Abstract

TreeWriterPkyg is a D@ framework package that manages the cre-
ation of a Root file containing instances of D@ chunks.

This document contains instructions for users of TreeWriterPkg.
It describes how to configure TreeWriterPkg to save the chunk in-
stances the user wishes to save on the branches named by the user.
It also explains how to use the facilities provided by the chunk au-
thors to select the particular chunk instances to be saved.

Chunk developers and maintainers should also read the edm-
root packages’s README file.

Contents

[1_Overview]
2 The tnt TTree

(3 Branch Objects|

4 Program Construction|

[6 Program Configuration|

R W W W

1 Overview

The tree writer pkg package contains the class TreeWriterPkg, a DJ
framework mode for the writing of standard D@ chunks to a special
Root “tree”. Since this package is a standard D@ framework package,
all the normal rules for the operation of a framework program using this
package apply. See the framework documentation for an explanation
of the general features of framework packages. This document explains
only those features specific to TreeWriterPkg.

2 The tnt TTree

The name of the TTree instance created by TreeWriterPkg is tnt, for
“thumbnail tree”. This tree contains a number of branches, config-
urable by the user. Each branch contains only one type of chunk. For
each event, each branch will contain either zero or one instances of
that chunk class.

Strictly speaking, the entries in the branch are not instances of the
chunk classes; rather, they are instances of TClonesArray. It is the
TClonesArray that contains either zero objects or one object. Further-
more, the class of the object in the TClonesArray instance is also not
the chunk class. For a branch that carries instances of XChunlk, the en-
try in the TClonesArray is actually of edm::ChunkWrapper<XChunic>.
Because the Root application automatically goes into the TClonesAr-
ray instance to obtain a pointer to the contained object, users of the
tnt need only deal with the chunk wrapper class at the Root prompt.
The end effect is that to access the member functions of the chunk
class stored on the branch, given a branch named "br”, one must use
the chunk wrapper class’s member function ptr() E], which returns a
pointer to the underlying instance of the chunk class, on which a mem-
ber function of the chunk class may be invoked. This is illustrated in

Figure [I]

root [1] tnt.Draw("br.ptr()->someMemberFunction()")

Figure 1: Example of use of the tnt tree at the Root application prompt.

3 Branch Objects

To control what chunk instance goes onto what branch, the user must
configure some number of branch objects. The creation of branch object

Do not attempt to use the data member of the chunk wrapper class; failure, some-
times spectacular failure, will occur.

classes is described in the README for the package edmroot; it is
expected that the author of each chunk provides at least one branch
object class for his chunk.

Each branch object class is associated with a single chunk class.
The purpose of the branch object is to select the matching instance of
the appropriate class, and to write that instances to the branch with
the name specified by the user.

It is up to the user to configure his program with the set of branch
objects which are to be available for use. How to do so is explained in
Section [4] It is also up to the user to select the subset of the available
branch objects which will be active in his program, how those branch
objects are configured, and how the mapping of the selected chunks to
branch names is to be done. This is explained in Section [5]

4 Program Construction

A program that uses TreeWriterPkg is constructed in the same fash-
ion as any other D@ framework program. Consult the D@ framework
documentation for general instructions.

The ctbuild build system is used to compile and link a program that
uses TreeWriterPkg. See the ctbuild documentation for details on the
use of ctbuild.

The author (or maintainer) of each chunk class is expected to pro-
vide a branch object registry header for each branch object class. For
a chunk named XChunl, it is expected that the branch object class be
named XChunkBO, and that the registry header file be named XChunkBQO.ref.hpp
A program that is to write instances of XChunk to a branch must in-
clude exactly one compilation unit which contains the branch registry
header for the branch object class associated with that chunk.

The ctbuild system requires at least one source file to trigger the
building of a binary target. This source file is the most convenient
place to #include the branch object reference headers corresponding
to the branch objects which the user wishes to have available in the
program.

5 Program Configuration

A TreeWriterPkg instance is configured with an RCP, as are all D@
framework packages. An example RCP file for TreeWriterPkg is shown
in Figure [2] and explained below.

Each framework package’s RCP must contain a string PackageName
(line 1), which gives the name of the class which it configures. See the
framework documentation for more details.

string PackageName = "TreeWriterPkg" /I 1

string branches = ("tc3", "sc") Il 2
string tc3 = ("TestChunk3BO", "1") /I 3
string sc = ("SampleChunkBO") /4
int minimumCountRequired = 3; II'5
string rootfilename = "test.root" Il'6

Figure 2: A sample RCP for configurating TreeWriterPkg.

Each TreeWriterPkg RCP must contain a vector of strings named
branches (line 2). This tells the TreeWriterPkg the number of branches
which are to be written, and their names. It is illegal for a name to be
the empty string. Other limitations on the branch names may be im-
posed by Root; see the current documentation for your version of Root
to be sure. In general, short alphanumeric names without embedded
punctuation or spaces are safe.

For each string in the vector branches, there must be an addtional
string with a name that matches that string; in the example in Figure
there are two such entries, tc3 (line 3) and sc (line 4). Each of these
vectors must contain at least one string.

The first string in the vector is the name of the branch object class
that is used to fill the branch. This is how the connection is made from
the name of the branch to the type of chunk object to be put on the
branch. The remaining (zero or more) strings are passed to the branch
object at the time of its construction, as configuration parameters. In
addition, the entire package RCP is also passed to each branch object
at construction time. The documentation for each branch objectE] tells
how the strings are to be interpreted, or what additional parameters
are to be read from the framework RCP.

Line 5 shows an example of an additional parameter to be used by
some branch object during initialization. Note that it is not possible to
determine which branch object will need this parameter — perhaps sev-
eral will. Comments in the RCP can help, as can a naming scheme that
prefixes each name with the name of the branch object class. A poor
name was chosen in this example to demonstrate the lack of clarity
that is caused by user of a poor name. Do not emulate this example!

2They all have documentation, don’t they?

5

	Overview
	The tnt TTree
	Branch Objects
	Program Construction
	Program Configuration

